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ABSTRACT: Cycle ambiguity resolution in applications that require both high accuracy and high integrity is
challenging. This paper describes new results, implementation details, and experimental validation for the
Enforced Position-domain Integrity-risk Cycle resolution algorithm (EPIC). EPIC computes tight bounds on the
integrity risk of cycle resolution by evaluating the impact of incorrect fixes in the position domain. Although the
fundamentals of EPIC were mathematically formulated in previous work, EPIC was limited to simple snapshot-
fixing systems (using least squares estimation). In this paper, EPIC’s capabilities are expanded to more general
applications that include Kalman filtering in the position estimation process. Practical implementation issues,
such as using partially-fixed ambiguity vectors in the filter, dealing with satellite geometry changes and cycle
slips, re-fixing the re-acquired satellites without jeopardizing integrity, and sensitivity analysis are thoroughly
addressed. Finally, experimental validation is provided and the results are compared with other methods for

integrity-constrained cycle resolution.

INTRODUCTION

Accuracy and integrity risk are fundamental per-
formance measures that affect navigation system
availability. In Global Navigation Satellite Systems
(GNSS), the integrity risk is quantified as the
probability that the position error exceeds prede-
fined alert limits. In order to provide GPS naviga-
tion for applications requiring high accuracy, car-
rier phase measurements are usually used. How-
ever, to extract high accuracy from carrier phase
measurements, cycle ambiguities must be resolved.
In navigation systems that have mild integrity risk
requirements (such as geodetic survey or agricul-
tural applications), all ambiguities can be fixed
without paying much attention to the reliability of
cycle resolution. For life-critical GNSS applications
(such as civil aircraft landing with a Ground Based
Augmentation System), extremely high levels of in-
tegrity are required [1]. If the integrity risk
requirement is extremely stringent, the user can
opt to ensure integrity, at the expense of the posi-
tion solution’s accuracy, by not fixing the ambigu-
ities. With the emergence of new aviation applica-
tions such as autonomous airborne refueling [2, 3]
and autonomous shipboard landing [4, 5], where
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the life of pilots is involved and the vehicles are
highly dynamic, high levels of both integrity and
accuracy are required simultaneously. In these sit-
uations, using carrier phase measurements to
meet both the accuracy and integrity risk require-
ments can be very challenging.

Over the last two decades, a large amount of
research has been conducted in the area of cycle
resolution, and many different approaches have
been developed to fix cycle ambiguities. A sum-
mary of the most frequently used methods is pro-
vided in [6] and [7]. To verify that a carrier phase
GPS navigation system can provide adequate
availability with the required high accuracy and
integrity, it is necessary to establish whether or
not the integrity risk of cycle resolution is suffi-
ciently low prior to the intended operation. Some
of these methods, such as integer bootstrapping
[8], provide an a priori measure of the probability
of fixing the ambiguities to their true integer val-
ues. The information from these methods can be
used to determine the probability of incorrect fix-
ing, which must be smaller than the integrity risk
requirement. This means that whenever the a pri-
ori probability of incorrect cycle resolution exceeds
the allocated integrity risk requirement, the opera-
tion is deemed unavailable.

In a method that has been used previously to
account for the integrity risk of cycle resolution



[9], a threshold on the Probability of Incorrect Fix
(P;r) is defined. The P;r threshold must be allo-
cated from, and be smaller than, the allowable
overall navigation integrity risk. During a typical
navigation operation, only a subset of ambiguities
(or linear combinations thereof) can be fixed with a
joint incorrect fix probability lower than the
threshold P;z The rest must be left as real-valued
(floating) numbers. This set of partially fixed ambi-
guities is then used in position estimation and to
generate the corresponding position domain protec-
tion levels. A protection level is a statistical bound
for position error consistent with the allowable
overall integrity risk; it is compared to a pre-
defined position domain alert limit for the specific
navigation operation. In the approach in [9] it is
implicitly and conservatively assumed that all
incorrect integer ambiguity candidates cause the
position estimate errors to exceed the alert limit.
Unfortunately, fixing a sufficient number of ambi-
guities to meet tight accuracy requirements with a
success rate that meets stringent integrity risk
requirement is not always possible [10, 11]. In
response, the Enforced Position-domain Integrity-
risk Cycle resolution algorithm (EPIC) has been
developed in [12].

EPIC is a new theoretical approach developed to
quantify the position-domain integrity risk for
cycle ambiguity resolution in satellite-based navi-
gation systems. While the assumption that any
incorrectly fixed cycle ambiguity vector causes haz-
ardously large position errors is simple and practi-
cal, it is overly-conservative and can unnecessarily
limit navigation availability for applications with
stringent requirements for accuracy and integrity.
By directly evaluating the impact of incorrect fixes
in the position domain, EPIC computes tighter
bounds on the navigation integrity risk resulting
from cycle resolution. To accomplish this, an inte-
ger space is considered including all candidate sets
of cycle ambiguities that cause the position error
to fall within the alert limit boundaries. If a candi-
date set is incorrect, it will introduce biases in the
estimated position error. As long as the sum of
probabilities of the biased estimates that cause the
position error to exceed the alert limit is lower
than the integrity risk requirement, navigation in-
tegrity is preserved. However, due to the existence
of these position domain biases, the practical use
of this method has thus far been limited to simple
snapshot-fixing systems that use least squares esti-
mation techniques to estimate the position after
fixing.

In this paper, we start with a brief overview of
the different methods that have been used to verify
the integrity risk of cycle resolution. We will then
review the fundamental theoretical background for
the EPIC algorithm that will serve as a basis for
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further derivations. Next, EPIC is extended to
implementations in more general navigation sys-
tems that involve Kalman filters (such as inertial
integrated GPS systems). To achieve this goal, we
derive closed form expressions for the time varying
position domain integrity risk at every epoch. Fur-
thermore, to include and recover satellites that are
newly-acquired after the initial fix (or re-acquired
after a brief loss of lock) without jeopardizing the
system’s integrity, a ‘Dual-Track’ (DT) fixing
method is introduced. In this method, an independ-
ent fixing track is implemented in which fixing of
newly acquired satellites is continuously attempted
while accounting for the integrity constraint. The
DT-EPIC algorithm is then implemented in a Kal-
man filter, and its performance is demonstrated in
scenarios where satellite blockages and outages
are frequent and abrupt, e.g., in urban environ-
ments, Autonomous Airborne Refueling (AAR), and
shipboard landing applications with steep bank
angles. Finally, EPIC and DT-EPIC are experi-
mentally validated by post-processing measure-
ments collected at the Illinois Institute of Technol-
ogy. Issues such as computational burden, sensitiv-
ity to input parameters, and real-time applicability
are also thoroughly discussed.

INTEGRITY OF CYCLE RESOLUTION

Different methods have been developed to
address the issue of the integrity of cycle resolution.
Although certain methods, such as the ratio test,
provide a measure of the quality of cycle resolution,
it is not yet clear how to tie such a test to the integ-
rity risk requirements [7] and [13]. Other methods
such as [14] provide a probabilistic measure of the
ambiguity resolution that can be used for integrity
verification. However, this method provides an a
posteriori measure and depends on access to the
measurements. The bootstrap method, on the other
hand, provides an a priori measure of the probabil-
ity of correct cycle ambiguity estimation. Further-
more, since this probability was derived stochasti-
cally, it is easily implementable in applications with
integrity risk requirements. Therefore, in this sec-
tion we briefly describe two approaches to address
the integrity of cycle resolution using the bootstrap
fixing method.

Conventional Method

This section briefly summarizes the method
derived in [9], which we refer to here as the “con-
ventional method.” It provides a formula relating
the P;r threshold, the fault free integrity risk
requirement (Igg.,) and the vertical protection
level. To derive the formula, it is easiest to start
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with the concept of the fault free Vertical Protec-
tion Level (VPLgy). VPLy, is defined in (1) as a
statistical overbound such that the probability
of the vertical position estimate error (|x, —x,|)
exceeding VPLpy equals Iy req-

P{|3Acv _xv| > VPLHO} :IHOreq (1)

where,

P{Hl}: the probability of event ‘W;

X,: vertical component of the estimated relative
position vector; and,

x,: vertical component of the true relative posi-
tion vector.

After fixing the ambiguities, two mutually exclu-
sive and exhaustive events can be defined in rela-
tion to (1): a correct fix (CF) and an incorrect fix
(IF) event. An IF includes all events where some
or all ambiguities have been fixed incorrectly. A
CF, on the other hand, includes only those events
where no ambiguities are fixed incorrectly. Note
that, by definition of a correct fix, if we choose not
to fix any ambiguity, thereby leaving the cycle
ambiguities floating, then the Probability of Cor-
rect Fix (Pcr) is equal to 1. At the same time, if we
choose to fix some or all ambiguities, we expect
Pcr to be less than 1. Using the law of total proba-
bility, Eq. (1) can be expanded to

P{|.7ACU — .’X,‘U| > VPLH()} = P{|5€U —xv| > VPLHO|CF}PCF
+P{|&, — x,| > VPLio|IF}Pyp (2

In this method, the probability that the vertical
error exceeds VPLy, given that the cycle ambigu-
ities are fixed incorrectly (.e., P{[x, —x,| >
VPLy|IF}) is conservatively assumed to be equal
to 1. This assumption is considered conservative
because in reality there might be incorrect fix
events that result in a small vertical error such
that P{|x, — x| > VPLpo|IF'} is less than 1.

Since the correct fix and incorrect fix events are
mutually exclusive and exhaustive, as defined ear-
lier, Pcr = 1 — Prr Using the conservative assump-
tion P{|x, —x,| > VPLpo|IF'} =1 in (2) and substi-
tuting the result into (1),

IHOreq = P{‘-’ACU _xv| > VPLH0|CF}PCF +PIF
1 - P (3)

= P{|&, — x,| > VPLyo|CF} = 0rea _~1F
Under the assumption that the GPS measure-
ment noise is bounded by a zero-mean Gaussian
distribution, the vertical position error after fixing
the cycle ambiguities correctly can be assumed to
be a random variable with a Gaussian distribution
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of zero mean and standard deviation, o, cz There-
fore, a probability multiplier (Kyvpr, cr) is calcu-
lated using the inverse of the cumulative normal
distribution function of P{|x, —x,| > VPLpo|CF}.
For example, for Iy ,oq = 107, in [9] a reasonable
threshold for P;r was found to be 108, which
results in Kvypr,|cr = 5.35. During a typical naviga-
tion operation, only a subset of ambiguities (or lin-
ear combinations thereof) can be fixed with a joint
incorrect fix probability lower than the threshold
P The rest of the ambiguities must be left as
floating numbers. This set of partially fixed ambi-
guities is then used in position estimation and to
generate o, cr VPLyyp is then calculated by multi-
plying o, ,cr by 5.35. This VPLy, must comply
with the maximum tolerable vertical error, which
is known as the Vertical Alert Limit (VAL).

Using this method, fixing a sufficient number of
ambiguities to meet the tight accuracy require-
ment with a success rate that meets the integrity
risk requirement is not always possible [10, 11].
Therefore, if tight accuracy and integrity require-
ments exist, as we will encounter later, this
method is not sufficient to provide reasonable navi-
gation availability. One venue to improve the
VPLy, calculation is the conservative assumption,
made after (2), that all incorrect integer candidates
will cause the position errors to exceed the alert
limits. This assumption was eliminated in the de-
velopment of EPIC [12].

Epic Algorithm

Instead of using the conservative assumption
that the vertical error exceeds VPLp, if ambigu-
ities are fixed incorrectly, EPIC considers an inte-
ger space that includes all candidate sets of cycle
ambiguities that cause the position error to fall
inside the alert limit boundaries. This includes all
sets, correct or incorrect fixes, as long as they
cause the vertical error to be bounded by the alert
limits with the allowable level of integrity risk. In
other words, if a candidate set is incorrect but sat-
isfies the position domain alert limit constraints,
we recognize that it does not violate integrity. In
the remainder of this section, we briefly explain
the EPIC algorithm. For more details, see [12].

Although VPL can be computed in EPIC [12], it
is easier to derive it and implement it by comput-
ing integrity risk directly. Instead of starting from
the definition of VPLy, that meets the integrity
requirements, EPIC calculates the integrity risk
(Izzp) induced by the cycle ambiguity candidates
and compares it to the required fault free integrity
risk (Igoreq). If the calculated integrity risk (Izo) is
less than the required integrity risk then the navi-
gation system is considered available under fault
free conditions. Fault free integrity risk is defined
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as the probability that the vertical error exceeds
VAL as shown in (4).

Iyo :P{|fcv—xv|>VAL} (4)

Considering the mutually exclusive and exhaus-
tive events corresponding to CF and all possible
incorrect fixes, IF},, and using the law of total prob-
ability as shown in (2), Eq. (4) can be rewritten as

IHO = P{‘&ZU —xU| > VAL|CF}PCF

+ ZP{|§CU —xy| > VAL|IF}, } Py, (5)

where IF, is the event corresponding to the A%
incorrectly fixed cycle ambiguity vector and Pz, is
the probability of occurrence of the £ incorrect fix.

Since it is impractical to calculate the series
with an infinite number of incorrect cycle ambigu-
ity vector candidates, the series is broken into two
subseries: one represents what will later be the
candidates of interest (¢ = 1-/) and another which
includes all remaining candidates (¢ = [ + 1—00).
In order to avoid calculating the latter subseries,
the conservative assumption P{|x, —x,| > VAL|
IF,.} =1 for k =1 + 1->00 is used. Using the fact
that the correct fix and all incorrect fix events are
mutually exclusive and exhaustive and then sim-
plifying and rearranging, the resultant equation
yields [12]

=1 (1 - P{|&, —x,| > VAL|CF})Pcy

l
~ " (1 - P{l&, — x| > VAL|IF}})Pp. (6)
k=1

In [12], it has also been shown that similar
expressions to Eq. (6) can be written for require-
ments other than VAL, such as Lateral Alert Limit
(LAL), vertical accuracy (A..,) or lateral accuracy
(Ach)-

Equation (6) is a closed-form expression in which
the effect of a set of ambiguity candidates on the
position domain integrity risk is explicitly defined.
In [12] it has been shown that if the series term in
(6) (which represents the incorrect fix candidates
to be tested) is neglected, the remaining expression
yields an equivalent representation to (3) with VAL
and Ipy replacing VPLyy and Igg.q, respectively.
Therefore, as long as the sum of the series in (6) is
greater than zero (which is always true), the integ-
rity risk computed using (6) will be lower than
that given by the conventional method. Therefore,
the EPIC algorithm portrayed in Eq. (6) provides a
tighter bound on integrity risk than the conven-
tional method. This in turn results in improved
navigation availability as shown in [12].
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An efficient method that is based on a sequential
elimination procedure has been developed and
detailed in [12] to construct the best cycle ambigu-
ity candidates. In that work, it has been shown
that its efficiency can be greatly enhanced and its
computation time can be considerably reduced if
the ambiguities to be fixed are decorrelated, for
example using the Least-squares AMBiguity De-
correlation Adjustment (LAMBDA) method [15] or
the Hassibi et al. decorrelation method based on
the Lenstra, Lenstra and Lovasz (LLL) algorithm
[16]. In this work, the derivations will be carried
out under the assumption that the decorrelation
method developed in LAMBDA is used. However,
both EPIC and the derivation methodology in this
work are still applicable if the LAMBDA decorrela-
tion scheme is not used. For compactness of nota-
tion, we will refer to P{|x, —x,| > VAL|CF} and
P{|xy, — x| > VAL|IF,} as Pvarcr, and Pvapim,
respectively. The details of how to compute Pcp,
Pizr, Pyarcr, and Pyarrr, have been provided in
[12]. Therefore, these aspects of EPIC will be omit-
ted in this work except for Pyarcr and Pyarrze,
which we revisit in detail in the following para-
graphs because of its relevance.

Calculating the probability that a set of ambigu-
ities is the correct one depends on the fixing
method wutilized. In this work, the bootstrap
method [8] is used for cycle resolution because it
provides a closed form a priori probability mass
function of the integer estimation error. The boot-
strap rounding method fixes ambiguities sequen-
tially and provides a measure of the Pcr at each
step of the fixing process. The sequential adjust-
ment is performed according to the cycle ambiguity
conditional variances with the ambiguity having
the lowest conditional variance being fixed first.
The i** conditional variance (a?,), defined as the
variance of the ambiguity i conditioned on the pre-
vious ambiguities in the set I = {1,2,...,i—1} being
fixed, is the (i,i) element of the diagonal matrix D
resulting from the LDL' decomposition of the
decorrelated floating cycle ambiguity estimate
error covariance matrix. At each step in this
sequence (the m'" step for example), the probabil-
ity of the bootstrapped integer estimate (a) (which
is an mX1 vector) being any arbitrary integer can-
didate (z) given that the correct fixed ambiguity is

(a) is given in [8] as,
1- 21 —z)
20’1‘]

Pla=s) =[]0
Lo (1 +217(a - z)) 3 1] )
26i|]

where 1; is the i column vector of the unit lower
triangular matrix (L™ T) resulting from LDLT
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decomposition of the ambiguity covariance matrix
and m is the number of cycle ambiguities fixed, m < n.

D(x) = /x \/%exp (—%Uz)dv

Therefore, if we set z equal to a (the correct
cycle ambiguity vector), Eq. (7) produces

P(a=a)= ﬁ [2@ (22,) - 1} (8)

i=1

which can be used to calculate Pop For Pjp the
value of (a — z) can be computed for the incorrect
fix candidate of interest. For example, if a one
cycle error on the first ambiguity is to be used as
the first incorrect fix event (IF';), then the vector
[10...0]" is used for (a — z) in calculating Pyp.

Before estimating the probability of the vertical
error exceeding VAL, for simplification in notation,
the conditional events CF and IF) are replaced by
a general event B. Later on, when we derive a
methodology for estimating this probability, we
will tackle the difference between the CF and IF
events and discuss the specific approach for each
one. By expanding the absolute value inside the
conditional probability term of (6), the probability
of the vertical error exceeding VAL given that
event B took place can be written as:

P{|&, — x,| > VAL|B} = P{(&, — x,)< — VAL|B}
+P{(x, —xv) > VAL|B} (9)

The position vector is linearly estimated using
GPS measurements with errors that are assumed
to be bounded by Gaussian distributions with zero
mean. Therefore, the distribution of the vertical
position estimate error will also be Gaussian with
a standard deviation defined as ¢,,5. The mean of
this distribution will depend on the event B and
hence is referred to as ug. Knowing the mean (ug)
and the standard deviation (¢,,5), the probability
of the first and second terms of the right hand side
in (9) can be calculated using the normal cumula-
tive distribution function at the limits -VAL and
VAL, respectively.

Returning to the CF and IF, events, the stand-
ard deviation of the vertical position error is not
affected by an incorrect fix. Therefore, o, 13 = 0, icF
for both the CF and IF, events (the calculation of
oy1cr 1s detailed below). The only difference
between these events is the mean of the Gaussian
distribution. Since the position vector is estimated
using unbiased estimators (such as least squares
or Kalman filter estimators), the mean is zero (ucp =
0) for the CF event (Pyarcr). In the case of IF}
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events, the incorrect integer candidate will induce
a bias in the relative position vector estimate. The
resulting position domain bias caused by the k™
incorrect candidate, (a — z),, depends on the esti-
mator used. Next, a method to compute o, ,cr and
the bias for an example Kalman filter implementa-
tion is detailed. A similar procedure can be followed
to derive o,,cr and the bias for other estimators.
Pyarirr can then be calculated using a normal cu-
mulative distribution function with standard devia-
tion ¢ = 0, cr and a mean (y;z,) equal to the verti-
cal component of the position domain bias.

Assume that prior to the fixing step, the state
estimate vector, S, containing the floating cycle
ambiguities and the relative position vector, and

the associated estimate error covariance, P, are
A X3x1 3 P; Psa
expressed as § = | and P = . In
P |:an><1:| {Pag P, }

this section, integer fixing is performed one ambi-
guity at a time, with an integrity check before fix-
ing a subsequent cycle ambiguity. That is, we only
fix the next ambiguity if the fixing operation does
not violate the integrity risk requirement. If the
LAMBDA decorrelation scheme is used, the i am-
biguity in the Z-decorrelated space, &g), is rounded
. . —()

to 1ts nearest integer, a, .
G _(i-1

ai) = round([leg Zi]s(l >) (10)

where,
éil) is the i rounded ambiguity element;

Z; is the i’ row of the transformation matrix Z;
Notice, however, that if the LAMBDA decorrelation

is not used, Z = I; and

_i-1) .
s(L ) is the updated state vector, s, based on fix-

() .
ing ambiguities 1 to i — 1, such that s( ) =§=
.7 ~71T

[x" a'].

Next, the position state vector estimate and
remaining floating ambiguities, s, are updated
accordingly as follows:

_(i-1) T _(i-1) - -1
K=P [01x3 Z;] <[01x3 Z,P [01x3 Z;] )

(11)

§<i>:§<i_1)+K<NZ(i>_[01X3 zi]g(i‘l)) (12)

_ (@) _(i-1)
P =I-K[0;x3 Z])P (13)

_ @)
where P is the covariance of the updated state
vector after fixing the i cycle ambiguity, such

_(0) .
that P = P. This process is repeated for the
desired number of fixed ambiguities (for example,
m times). At this point, ¢,,cr can be computed as
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the square root of the (3, 3) element of P(’"),
assuming that a local east-north-up coordinate sys-
tem is used for positioning.

_(m)

O'U\CF = P(373> (14)

To calculate the position domain bias, we start

by evaluating the impact on the state vector of fix-

ing m ambiguities (m < n), which is done by
replacing Eq. (11) and (12) by their equivalents:

K, = p[OmXS Zl:m(m><n)

™ -1
X ({Omxs Zl:m(an)}p{OmXS Z1:m<an)}) (15)

]T

_(m)

s" =5+ K (a7 = [Onxs Zum i |8) (16)

where Z;.,, is made of rows 1 to m of the transfor-
mation matrix Z. If the LAMBDA decorrelation
is not used, Zp.,, is replaced by Zi,, = [Lnixm
Omx(nfm)]'

Assume that the correct partially-fixed ambiguity
vector is a(, x1) and the incorrect ambiguity vector is
Zymx1)- The estimated states (scp) after fixing the
ambiguities correctly and the states (s;z) after fixing
the ambiguities incorrectly, respectively become:

s s+ K@ [Onws Zimls)  (17)

o) = 8 1 Kp(2p — [Onrs Zim]S)  (18)

Therefore, the entire state vector difference (by)
caused by the k'™ incorrect ambiguity candidate
vector (a — z;) is computed by subtracting (18)
from (17):

(m) _(m)

The position domain bias is then extracted from
the elements in b, corresponding to the position
states. Then, 7z, can be determined from the ver-
tical component of the position domain bias.

Due to the existence of these position domain
biases, the practical use of this method in [12] has
been limited to simple snapshot-fixing systems
that use least squares estimation techniques to
estimate the relative position vector after fixing. In
the next section, EPIC will be extended to more
general navigation systems by laying out the fun-
damentals of computing the position domain integ-
rity risk continuously over time. In these deriva-
tions we take as an example the Kalman filter
implementation because of its abundant use as an
estimator in various navigation applications. The
same procedure can be followed to derive the integ-
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rity risk computation for other types of estimators
or implementations.

KALMAN FILTER IMPLEMENTATION FOR EPIC

In the original EPIC algorithm, fixing ambigu-
ities takes place only once to ease the computation
of the integrity risk and to ensure that the risk
does not grow over time as additional ambiguities
are fixed. In this section we define the necessary
steps and derive the principal formulas for comput-
ing the integrity risk of the position estimate over
consecutive Kalman filter updates. If the integrity
risk in (6) is to be computed while updating the
position estimates using a Kalman filter, the incor-
rect fix candidates that have been chosen at
the fixing step, as well as Pcr, Prrr, Pvarcr and
Pyarirr, must be reevaluated. Some of these quan-
tities might change with time due to changes in
nominal satellite geometry or due to acquisition or
loss of satellites. We will first discuss the nominal
geometry change and then focus on acquiring and
losing satellites. Since it is assumed that fixing the
ambiguities takes place only once (snap-shot fix-
ing), as long as the same ambiguities are main-
tained in the Kalman filter (either float, partially
fixed, or all-fixed), Pcr and Pjz;, are not affected by
satellite geometry change and remain the same.
On the other hand, the standard deviation of the
position estimate, ¢, cr (after fixing the ambigu-
ities), differs as the satellite geometry varies. In
addition, since the state estimate vectors using the
correctly and incorrectly fixed ambiguities change
in time due to the change in geometry, b, (and
hence the position domain bias and pz,) also will
vary. Remember that both ¢,,cr and b;, are used in
the computation of Pyrcr and Pyarire.

As the satellite geometry changes, the estimator
automatically provides the updated o, ,cr There-
fore, we focus our attention on generating and
updating the position domain bias over time.
Remember that the position domain bias is
extracted from the corresponding position state ele-
ments in by, which by definition is the difference
between the state vector estimated using the cor-
rectly fixed ambiguities and the one using the %™
incorrect ambiguity set:

b, = scr — s (20)

After the fixing step, the state estimate is propa-
gated forward through the Kalman filter time
update and then through the measurement update.
In the time update, from time j — 1 to time j, for
example, the updated bias is defined as:

by = Scrj — SiFkj (21)
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where a crown on top of the state estimate vector,
s, denotes the state vector after integer and a bar
on top denotes an a priori estimate (before using
the measurements at that epoch j). However, both
the correct and incorrect state estimate vectors are
updated using the same dynamic model as:

scrj = Vjscr j-1 (29)

Sirk,j = PjStrr j-1

where ® is the state transition matrix and a hat
denotes the a posteriori estimate (after applying
the measurements). Substituting (22) into (21) and
using the definition of by from (20) for time j — 1
results in,

bk.,j = (ECF.jfl - §1Fk,j71) = CDJ-lA)kJ-,l (23)

where the initial lA)k,O is by, at the fixing step, which
is computed using Eq. (19).

Equation (23) is used to update b, as the state
estimate vector is updated through a Kalman time
update. At the measurement update, the state vec-
tor using the correct fix and incorrect fix ambigu-
ities is updated by the measurement vector, y;, the
observation matrix, H;, and the Kalman gain, K,
as in Eqgs. (24) and (25), respectively.

scr.; = scr.; + K; (yj - HjECF,j) (29)

Sirk,j = Sirn,j + K; (YJ - ngle.j) (25)

The reader should notice that the same Kalman
gain is used to propagate the state vectors in Egs.
(24) and (25), and hence is not affected by whether
or not a correct fix or incorrect fix has occurred.
This conclusion is reached by realizing that the
Kalman gain, K, is not populated with the actual
cycle ambiguity estimates, but rather the covari-
ance matrix of the cycle ambiguities. Since the co-
variance matrix does not change if a correct fix or
incorrect fix has occurred, the Kalman gain also
does not change. Using the definition of b, in (20)
and subtracting (25) from (24) results in:

by = scrj — sirnj = (I - KH))by (26)

The satellite geometry change will be captured
in the observation matrix, H;, and the Kalman
gain, K;. Equations (23) and (26) provide the mech-
anism of projecting this variation to by. As by ; is
computed at every epoch, pyp ; is extracted and
used together with o,|cr; to compute Pyazcr; and
Pyaripe, ;. These in turn are used in Eq. (6) to com-
pute the integrity risk at every epoch, j.
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If there is an abrupt change in the satellite geome-
try such as acquiring new satellites, losing satel-
lites, or cycle slips, further steps need to be taken.
Typically, if a satellite sets or gets blocked, its corre-
sponding states in s (associated ambiguities, for
example) are removed. Since these ambiguities have
been removed, the states in b, corresponding to that
satellite must also be removed. Also, any incorrect
ambiguity candidate set that has integer offsets for
that specific satellite must be removed together with
their associated probabilities (Pyz). In contrast, it is
quite challenging to adjust Pcr after taking those
integers out of the solution. However, since the Pcr
computation is the product of the individual condi-
tional probabilities corresponding to the fixed ambi-
guities (7), taking integers out of the Pcr computa-
tion should make Pcy larger. Therefore, preserving
the original Py from the fixing step when a satellite
goes out is a conservative assumption.

If a satellite is acquired after the fixing step, it
would be beneficial to use its measurement in the
Kalman filter. Usually, the corresponding states for
the new satellite are initialized before being used in
the Kalman filter. Since the ambiguity state for that
satellite is not fixed yet, the bias state associated
with it should be initialized to zero. The process of
fixing the newly acquired satellites after an initial
fixing step without jeopardizing integrity is challeng-
ing. Hypothetically, the initial fixing step may have
consumed most of the budget from the integrity risk
requirement allocated for cycle resolution. It has al-
ready been shown that EPIC provides a tight bound
on the integrity risk of cycle resolution, leaving very
little margin for a new fixing attempt. In addition,
recall that the bootstrap fixing method requires the
computation of conditional variances in order to com-
pute Pcr These computations can be carried out pro-
vided that no prior fixing attempts have been con-
ducted. Once a fixed solution has been achieved, any
new fixing attempts will have to account for the ini-
tial fixing attempt in the computation of Pcz which
is not a trivial task. In light of these issues, newly
acquired satellites are not fixed, and therefore, Pcp
and Pjzp, initial values remain unchanged. In this
work we adopt a new fixing algorithm that is able to
initiate a new fixing attempt at any time without tak-
ing advantage of the already fixed solution. The only
question that remains is whether or not a new fixing
attempt should only be conducted at epochs where
new satellites are acquired. The answer to this ques-
tion in addition to the concept of the new fixing algo-
rithm is discussed in the next section.

DUAL TRACK FIXING ALGORITHM

The basic premise of the dual track fixing algo-
rithm is to continually attempt to fix a current
floating satellite set subject to integrity risk

Khanafseh and Langel: Implementation and Experimental Validation 51



Fix > KF

Update

h 4

v

KF

I g I
| |

<
s_lf'nfcf
—————— > .
Switch -
Decision sf
>
g . (better
/1 | performance)
| Fix [—— >

| Update

I;I. I

Fig. 1-Dual track fixing algorithm

requirement. Once the cycle ambiguities have been
resolved, or partially resolved, any additional fix-
ing might cause an integrity breach. One simple
way to insure integrity while fixing newly acquired
satellites is to perform an entirely new fix that
does not rely on any previously fixed integer infor-
mation. In other words, if fixing is performed on a
float solution, the whole integrity risk budget can
be used again (but without taking credit for previ-
ous fixes). This new fixing attempt can be applied
every epoch. In this way, we can ensure the use of the
best available satellite geometry and the best fixed
ambiguities (subject to integrity risk requirements)
for positioning without jeopardizing integrity. This
algorithm is shown schematically in Figure 1.

The dual track fixing algorithm begins by
assuming that there is an initial floating solution
with a state estimate vector, Sy, and associated co-

variance matrix, Py. (Note that for clarity, only the
state estimate inputs and outputs are shown in
Figure 1.) Integer fixing using EPIC is conducted
next, which outputs a state vector with fixed ambi-

guities (maybe partially fixed), sp, and covariance

matrix, Py. After the initialization step, there are
two options. First, to use the current measurement
(y;) at time j and propagate the previous solution
forward using the Kalman filter propagation equa-
tions, which provides the current estimate vector,

Sjioid, and covariance matrix using the old fixed

ambiguities, Pj,;4. The EPIC integrity risk at this
stage is computed using Eqs. (23) and (26). This
option, shown as the upper track in Figure 1, is
representative of how the original EPIC algorithm
works [12].

The other option is to use a Kalman filter to
propagate the float solution, §; ; and f’j,l, forward.
Then, a new fixing attempt is executed using
EPIC. The output solution of the new fixing step is

denoted as Sjn.,, and ?jnew. Notice that in the sec-
ond track, shown as the lower track in Figure 1,
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only the float estimates are used in the Kalman fil-
ter loop. Therefore, it is permissible to use the
whole integrity risk requirement because it did not
profit from the old fixing step. Since at the output
of the two tracks we have two solutions, a decision
must be made. If the EPIC integrity risk is smaller
using the newly fixed solution (lower track) than

using the old one (upper track), then sj,, and
Pj,.., Will replace s; and P}, respectively, and will
be used in the old fixed solution on the upper track
from this point forward. If the EPIC solution for
the newly fixed ambiguities is not better than the
old one, then no switch is made and the new fixed

solution, Sjne,, and 13jnew, is discarded. The execu-
tion of this process at every epoch has three main
advantages. First, the dual track algorithm provides
a means of fixing newly acquired satellites or recov-
ering satellites that have been momentarily blocked.
Second, the increased filtering time achieved in the
lower track can potentially improve observability on
the floating cycle ambiguity estimates, resulting in
a larger number of fixed ambiguities. However, it is
noted here that this effect may be minimal if there
are many instances of severe satellite blockage dur-
ing the mission, as is observed during a banking ma-
neuver of an airplane. In this example, if a particu-
lar satellite is continually coming in and out of view,
then there is no time for the filter to acquire observ-
ability on the satellite’s cycle ambiguity, and the
dual track algorithm will not provide any appreci-
able benefit. Finally, accuracy and integrity risk
requirements may be changing during the duration
of a given operation. Hence, an initial fixed solution
that meets the requirements at the current epoch
may not satisfy the requirements at a future epoch,
causing a potential loss of continuity and rendering
the operation unavailable (when evaluated at the
initiation of the operation). The dual track algo-
rithm can produce a better solution at a given epoch
that complies with the current accuracy and integ-
rity risk requirements.
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In previous work [12], the performance of the
EPIC algorithm was quantified for an autonomous
shipboard landing application as an example. How-
ever, in that work, it was assumed that the land-
ing was achieved using a straight-in approach,
where satellite geometry change is minimal. In
order to investigate the performance using the
Dual Track (DT) fixing algorithm and EPIC in a
Kalman filter implementation, a shipboard aircraft
landing application using a curved approach is
considered next.

PERFORMANCE QUANTIFICATION SIMULATIONS

In this section, we quantify the performance of
EPIC (applied in a Kalman filter) with the dual
track fixing algorithm (EPIC+DT) and consider it
for shipboard landing in the presence of satellite
blockage. Aircraft carrier recovery patterns flown
by Navy pilots are quite different depending on the
time of day, prevailing weather conditions, and vis-
ibility. For example, in adverse weather conditions
and during all night flight operations the pilot con-
ducts a Case-III approach (straight-in approach).
Due to the lack of visibility, Case-III recoveries are
conducted one aircraft at a time. On the other
hand, if the pilot has good visibility and is return-
ing to the ship during the daytime, then he/she
conducts a Case-I approach, shown in Figure 2.
The advantage of this flight pattern is that it
allows the carrier to recover more aircraft during
any given time period than possible using a Case-
IIT approach pattern. Providing instrument land-
ing support for Case-I approaches becomes neces-
sary if unmanned aerial vehicles are incorporated
into existing carrier fleets.

The Case-I recovery is a well established carrier
landing approach that is routinely executed by
Navy pilots and will serve as the mission profile
for the simulations in this work. During a Case-I
recovery the aircraft must complete a series of
high banking maneuvers which will inevitably
result in satellite blockage. This landing pattern is
composed of six distinct phases. The pilot first
enters a holding pattern (Phase 1) until he/she
receives notification from the ship that the aircraft
is cleared to land. Upon receiving clearance, the
pilot breaks out of the holding pattern and
descends to ‘initial;’ the beginning of the final land-
ing approach (Phase 2). A constant altitude fly-by
is then conducted (Phase 3) followed by a 180°
turn at a high bank angle (possibly exceeding 60°)
(Phase 4). Finally, the aircraft proceeds back
towards the carrier (Phase 5) and completes
another 180° turn with a bank angle of up to 30°
before arriving on the flight deck. It is important
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Fig. 2—Case-I recovery profile (ship is not to-scale)

to realize that the banking during this approach
ultimately results in serious satellite blockage.

Let us now describe the navigation architecture
in which EPIC will be implemented. This naviga-
tion architecture is designed to support a specific
application: autonomous shipboard landing.
Because of the mobility of the reference station in
a shipboard-relative landing application, higher
levels of accuracy are required than for similar
precision approach applications at land-based air-
fields. In addition, to ensure safety and operational
usefulness, the navigation architecture must pro-
vide high levels of integrity and availability.
Because of the highly stringent requirements, the
navigation system is based on Carrier Phase Dif-
ferential GPS (CPDGPS) positioning. However in
order to benefit from the high precision of
CPDGPS the correct resolution of cycles must be
ensured. A number of methods have been used in
prior work to aid in the high-integrity cycle resolu-
tion. Satellite motion can provide the observability
of the cycle ambiguities [17]. Unfortunately, the
rate of satellite motion is relatively slow in com-
parison with the time scales of the mission.

Heo et al. have proposed a GPS navigation algo-
rithm for autonomous shipboard landing applica-
tions where geometry free/divergence free code-
carrier filtering is performed continuously for visi-
ble satellites on both the aircraft and the ship until
the aircraft is close to the ship [5, 10]. Geometry-
free filtering [18], by definition, does not depend on
the geometry of the satellites or the user location
and eliminates major error sources such as atmos-
pheric errors, clock, and ephemeris errors, and
leaves small errors such as receiver noise and mul-
tipath. A geometry free measurement of the wide-
lane cycle ambiguity is formed by subtracting the
narrowlane pseudorange from the widelane carrier
[17, 18]. A drawback of the geometry free measure-
ment is the presence of higher noise relative to the
L1 and L2 carrier phase measurements. This can
be overcome by filtering the geometry free mea-
surement over time prior to the final approach. In
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order to model colored multipath noise in the ge-
ometry free measurements, a first order Gauss-
Markov measurement error model is used. In this
work, a time constant of one minute for the ship
and 30 seconds for aircraft is assumed. The out-
puts of the filtering process are the floating wide-
lane cycle ambiguity estimates. When the aircraft
is close to the ship, floating L1/L2 cycle ambiguity
estimates can be extracted with the aid of satellite
geometric redundancy [4, 5]. Next, the cycle ambi-
guities are fixed using the bootstrap method [8].
For the conventional method, the bootstrap round-
ing process is performed for those ambiguities that
can be fixed with a Pjr that is lower than a thresh-
old of 1078 (for an overall fault free integrity risk
requirement of 10~ 7, for example). The remaining
ambiguities remain floating. With the ambiguities
partially fixed, the standard deviation of the posi-
tion estimate error (¢,,cr) is used to calculate
VPLyo. Using EPIC, on the other hand, the posi-
tion domain integrity of cycle resolution (Ig,) is
calculated using (6).

The performance, therefore, can be predicted for
a single approach through a covariance analysis
and availability computation. To account for the
GPS satellite geometry change, availability analy-
sis is performed by simulating 1440 approaches
(one approach per minute during the day). Because
of aircraft banking in the Case-I approach, the
navigation performance is sensitive to the ship
heading. Based on the results of [19], it is known
that the worst satellite blockages occur when the
aircraft heading at touchdown (ship heading) is in
the south direction. A given approach is said to be
available if the accuracy and integrity require-
ments will be satisfied at each point along the
approach. In the conventional method, availability
is calculated as the percentage of approaches for
which VPLy, and o, cr during the entire approach
are less than VAL and the accuracy requirement,
respectively. Using EPIC, availability is calculated
as the percentage of approaches for which Iy, and
P,.. during the entire approach are less than the
requirements (Igp ,eq and Pgaee req, Tespectively).
For the autonomous shipboard landing application,
accuracy and integrity requirements vary as func-
tions of distance to touchdown. The logic behind
the requirement variation is that these require-
ments will become more stringent as the aircraft
comes closer to completing its mission. As we pro-
ceed, a hypothetical example of required vertical
positioning performance will be defined as a func-
tion of distance to touchdown.

Three factors must be considered when deter-
mining where to first fix the cycle ambiguities: ge-
ometry free pre-filtering duration, the dynamic na-
ture of the performance drivers, and robustness to
ionospheric and tropospheric error models. Of

54 Navigation

[ - Geometry-free meiltnn’n&
(float positioning) |

5 P e _‘_ Kalman Filtering (Fixed ‘
= / - 7 - Starting . positioning)
E4 7 Point
£ p \
PN .
w 3 1 I ]
= I
B I |
82 1 Fixing
S \ \ Point

1 o ¥ f .

= - A ,
0 N, ey
-6 -4 -2 0 2 2 p

X coordinate (Nmi)

Fig. 3—Initial fix point (ship is not to-scale)

course, prior to the initial fixing point, we wish to
pre-filter as long as possible since this will improve
the cycle ambiguity resolution. However, note that
before reaching the initial fix point, the navigation
architecture is only providing floating solutions for
positioning. Since the performance criteria tighten
as the aircraft comes closer to landing, there exists
a point where the floating solution will no longer
satisfy the requirements, rendering the approach
unavailable. Lastly, the Kalman filter propagation
must be robust to the ionospheric and tropospheric
decorrelation error models. If the baseline between
the aircraft and ship becomes too large, the fidelity
in the error models diminishes. In order to accom-
modate these issues, the fixing point shown in Fig-
ure 3 was selected. Based on [19], this point, in the
5% phase of the approach, is approximately 2 nmi
away from the ship, and represents a good compro-
mise for the issues described above.

The requirements and simulation parameters
that are used in this work are based on those given
in [5, 10, 19]. Example requirements on VAL and
accuracy (A.) as a function of the distance to
touchdown along the flight path (d) are shown in
Table 1. In this simulation, the standard deviation
of the carrier phase (single difference) measure-
ment noise, oay, is assumed to be 1 cm and the
standard deviation of the pseudorange (single dif-
ference) measurement noise, oapr, is assumed to
be 50 cm. The single difference standard devia-
tions, gapgr and Any, are related to the raw values
(opr and o) by a scaling factor of /2. In this anal-
ysis, geometry free pre-filtering is assumed to start
at the beginning of the approach and is used to
generate floating estimates of the widelane cycle
ambiguities. The rest of the simulation parameters
are summarized in Table 1. The performance of
EPIC+DT algorithm is compared to both EPIC-
only and conventional methods.

Using the described navigation architecture and
the parameters given in Table 1, Figure 4 shows
the vertical positioning estimate error after the ini-
tial fix for a single approach using different fixing
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Table 1—Simulation Parameters

Parameter Value

IHO req 1077

Poce req 0.05

VAL d<05nmi: VAL =18 m

0.5nmi <d <5nmi: VAL =
8.4xd/9 + 4/3 m
A d<05nmmi:A,=03m
0.5nmi <d <5nmi:A.,=
2xd/9 + 17/90
Standard 24 satellite
(D0O229C) [20]

Satellite constellation

Location Honolulu (22°N and 158°W)
Geometry-free 1 minute
multipath time
constant
Ship multipath time 1 minute
constant
Aircraft multipath 30 seconds

time constant

methods: the conventional method (Black dash-dot
curve), EPIC-only (gray dotted curve), and
EPIC+DT (gray continuous curve). The black
dashed curve in the figure represents the accuracy
requirement throughout the approach as defined in
Table 1. The figure illustrates that, unlike the
Case-III approach results in [12], the improvement
in performance using EPIC compared to the con-
ventional method for this specific Case-I approach
is marginal. It is because of the frequent satellite
blockages during the approach that the EPIC-only
performance is limited and it fails to meet the
requirement. However, including the dual track
fixing algorithm with EPIC improves the perform-
ance substantially and it is evident that there is
switching taking place (between 0.5 and 0.7 nmi).
It is also evident that adding the dual track algo-
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Fig. 4-Vertical positioning estimate error using the conventional
method, EPIC-only, and EPIC+DT
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rithm to EPIC (EPIC+DT) allowed re-fixing the re-
acquired satellites, resulting in improved accuracy
and compliance with the stated requirements.
These results are confirmed when all 1440 ap-
proaches are considered to compute availability.
While the availability using the conventional
method is 26.7%, the addition of EPIC boosts the
availability to 47.4%. However, when EPIC+DT is
used, a remarkable gain in performance is ob-
served with an availability of 97.7%.

In order to understand how computationally
demanding EPIC is, consider the relative fre-
quency of the number of incorrect fix candidates
required to achieve the requirements in the simu-
lations conducted earlier. This analysis is summar-
ized in Figure 5 below. For example, Figure 5 illus-
trates that in more than 90% of the cases, 20 can-
didates are sufficient to meet the requirements.
However, no more than 500 candidates are needed
in any individual case and less than 1% of the
cases need more than 100 candidates. Notice that
the number of candidates has a direct impact on
the memory allocation because the biases are com-
puted using the candidates. For example, the
memory should be able to handle 500 bias vectors
of at least (3+n) elements (for position and ambi-
guity vectors only, for example). Remember that all
of these biases must be saved and propagated
using Kalman filter measurement and time
updates. The simulations conducted in this section
were performed using a 3GHz Quad-core Intel
Pentium 4, 3GB RAM PC, and needed a maximum
of 0.07 seconds of EPIC computation time for the
500 candidate case. Although the real system may
not be able to achieve this level of computing
power, it will be implemented in a higher level pro-
gramming language such as C and these numbers
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Table 2—Measurement Noise Standard Deviations

Parameter Value
L1 oap 0.5 m
L2 OAp 1.0m
L1 oa¢ 1.0 cm
L2 oa¢ 1.8 cm

are only provided here for computational compari-
sons. Therefore, implementing EPIC+DT algo-
rithms in real time applications is quite practical.

In summary, the conducted simulations show
that the EPIC+DT performance is superior to the
conventional methods and provides a gain of more
than 70% in availability. In the following section,
experimental validation of the EPIC+DT algorithm
is described.

EXPERIMENTAL VALIDATION

GPS data were collected from two static anten-
nas on the rooftop of the E1-Building at the Illinois
Institute of Technology (Chicago, IL). The two
antennas were separated by approximately 25 m.
NovAtel OEM-V receivers were used to collect
approximately one hour of dual frequency code and
carrier phase measurements on December 7, 2009.
The data were processed using the shipboard navi-
gation algorithm that was described earlier and
explained thoroughly in [19, 21]. After pre-filtering
for 10 minutes, the float ambiguity estimates are
determined and fixing is attempted using the dual
track fixing algorithm. Fixing using EPIC is com-
pared to fixing with the conventional methods.
Except for the L2 measurement noise levels, which
are inflated because NovAtel OEM-V uses semi-
codeless L2 tracking, and the multipath time con-
stant (which is increased to 120 seconds because

Down (Fixed - Conventional)

the antennas are static), the same parameters in
Table 1 are used in this analysis. Table 2 provides
the measurement noise standard deviations that
are used in this experimental validation.

The true relative position vector between the
two antennas has been surveyed using an inde-
pendent high accuracy algorithm to be 0.448 m,
25.678 m, and —0.009 m in local north, east, and
down directions, respectively. The error in the rela-
tive position vector estimates is then computed by
subtracting the estimates from the true relative
position vector. Errors in the vertical component of
the relative position vector estimate using the con-
ventional and EPIC methods are shown in Figure
6. Covariance envelopes using the two methods are
also shown (dashed curves). It can be seen that the
error in EPIC is the same as the conventional
method when both algorithms fixed all ambigu-
ities. However, it is clear from the covariance enve-
lopes that EPIC could partially fix more ambigu-
ities 700 seconds earlier (at 600 seconds) than the
conventional method (at 1300 seconds). It also pro-
vided more accurate estimates with tighter bounds
on the position domain errors.

CONCLUSIONS

Cycle ambiguity resolution in applications that
require both high accuracy and high integrity is
challenging. In previous work, a method capable of
meeting stringent integrity and accuracy require-
ments was developed (EPIC), but it was limited to
snap-shot positioning algorithms. In this work,
EPIC was expanded to include more general posi-
tioning algorithms that include filtering (such as
Kalman filtering). In this context, we derived
closed form expressions to estimate the time vary-
ing position domain cycle resolution integrity risk
at every epoch. In addition, a dual track algorithm,
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Fig. 6-Experimental results using the conventional and EPIC methods
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which is a mechanism to re-fix new satellites with-
out jeopardizing integrity, has been developed. The
advantage of the dual track fixing algorithm is
that it does not require any information obtained
from prior fixing attempts. Hence, cycle ambigu-
ities are re-acquired without accumulating addi-
tional integrity risk. The improvement in naviga-
tion performance using EPIC with the dual track
fixing algorithm was quantified for an example
shipboard landing relative navigation application
in curved approach scenarios. The availability
analysis demonstrated that the new methods pro-
vide considerable availability enhancement relative
to the best existing method. In addition, computa-
tional sensitivity analysis and experimental valida-
tion showed that the EPIC and dual track fixing
algorithms are both practical for real time applica-
tions.
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